Should We Defy Amdahl's Law

(or DAL's motivations)

André Seznec INRIA/IRISA

DAL: Defying Amdahl's Law

ERC advanced grant to A. Seznec (2011-2016)

DAL objective:

« Given that Amdahl's Law is Forever propose (impact) the microarchitecture of the 2020 General Purpose manycore »

10 years in the multicore era and what?

Multicores are everywhere

Parallel (mainstream) apps do not materialize

Multicores are everywhere

- Multicores in servers, desktop, laptops
 - 2-4-8-12 O-O-O cores
- Multicores in smart phones, tablets
 - 2-4-(not that simple) cores

- Manycores for niche markets
 - 48-80-100 simple cores
 - Tilera, Intel MIC

Multicore/multithread for everyone

- End-user: improved usage comfort
 - Can read e-mail and hear MP3

- Parallel performance for the masses?
 - Very few (scalable) mainstream // apps
 - Graphics
 - Niche market segments

No parallel software bonanza in the near future

Inheritage of sequential legacy codes

Parallelism is not cost-effective for most apps

Sequential programming will remain dominant

Inheritage of sequential legacy codes

- Software is more resilient than hardware
 - Apps are surviving/evolving for years, often decades
 - Very few parallel apps now

Unlikely redevelopment of parallel apps from scratch

- Computing intensive sections will be parallelized
 - But significant code sections will remain sequential

Parallelism is not cost-effective for most apps

- Why parallelism?
 - Only for performance

- But costly:
 - Difficult, man-time consuming, error prone
 - Poorly portable: functionality and performance

Sequential programming will remain ₉ dominant

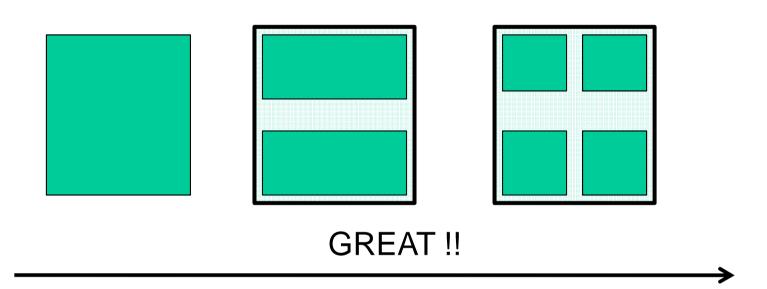
- Just easier
 - The « Joe » programmer
 - Portability, maintenance, debug

- + compiler to parallelize
- + parallel libraries
- + software components (developped by experts)

Looking backwards

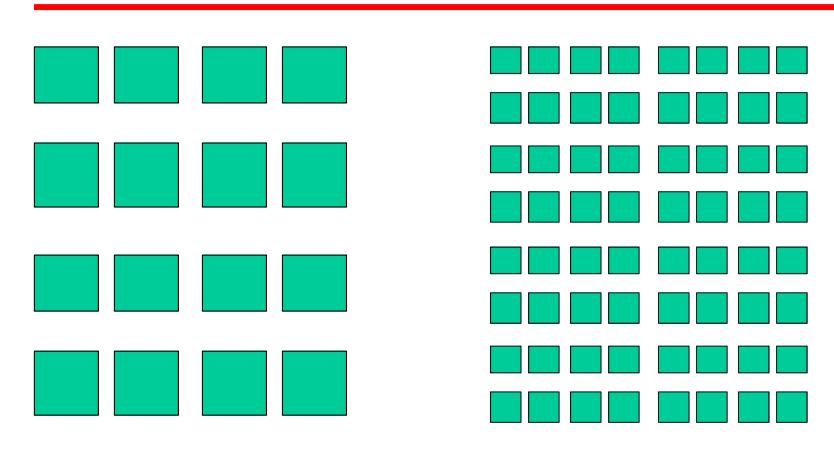
2002: The End of the Uniprocessor Road

- Power and temperature walls:
 - Stopped the frequency increase
- 2x transistors: 5 %? 10 % ? perf. (if any)


economical logic: buy smaller chips!

IC industry needs to sell new (expensive) chips: Marketing:

« You need 2 (4, 8) cores »



Marketing multicores to the masses 12 2002-..

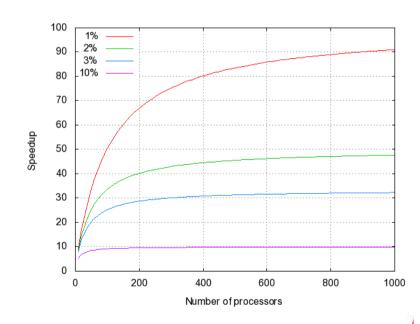
And now?

The end user is not such a fool ..

Following the trend: 2020

- Silicon area, power envelope
 - for 100 Nehalem class cores

or


 for 1,000 simple cores (VLIW, in-order superscalar)

Amdahl's Law

"Cannot run faster than sequential part"

parallel seq.

Naive model

- A parallel application:
 - Parallel section: can use 1000 processors

Sequential section: run on a single processor

SEQ: fraction of code in sequential section

Complex cores against simple cores

CC: 100 complex vs SC:1000 simple cores
with complex 2X faster than simple

if SEQ > 0.8 % then CC > SC

And if ...

- Use a huge amount of resource for a single core:
 - → 10X the area of the complex core
 - → 10X the power of the complex core
 - → Use all the uniprocessor techniques
 - Very wide issue (8 16 ?)
 - Ultimate frequency (« heat and run »)
 - Helper threads
 - Value prediction

• ..

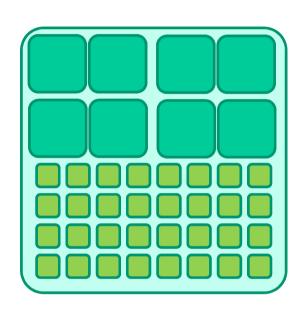
Ínria

And if ...

- UC ultra complex cores (but only 10)
 - 10X more resources than complex cores
 - but only 10 of them
 - 2X faster

- → If SEQ > 3.3 % then UC > SC
- → If SEQ > 8 % then UC > CC

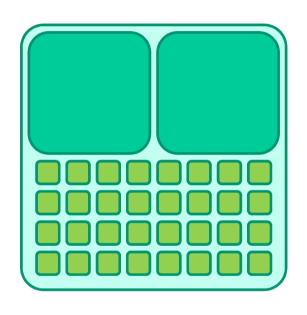
So what?


- Embarassingly parallel
 - → SC simple cores

- Some parallel + some sequential
 - → CC complex cores

- Sequential+ poor parallel + multiprogrammed
 - → UC ultra complex cores

And hybrid SC + CC?



CC_SC:

- 50 complex
- 500 simple

DAL architecture proposition

- Heterogeneous architecture:
 - A few ultra complex cores
 - to enable performance on sequential codes and/or critical sections
 - A « sea » of simple cores
 - for parallel sections

For our simple model

« DAL » : UC_SC

5 ultra complex cores + 500 simple cores

If SEQ > 0.13 % then « DAL » > SC

« DAL » always better than UC, CC, CC_SC

DAL

→ Many groups targetting architecture for parallel performance

→ Many groups targetting energy efficiency

Let us concentrate on performance on sequential apps or code sections

DAL research directions

- Focus on the sequential performance
 - The sequential accelerator
 - Heat and run
 - Microarchitecture of O-O-O execution cores
 - Revisit all the « old » concepts
 - but with quasi-unlimited resources
- Manycores and sequential codes
 - Can we use (adapt) the plurality of (simple) cores?

