Let's imagine... computational physics algorithms ... (for) the future

Erwan Faou

INRIA Rennes

Rennes, November 8, 2012

Example 1: Molecular dynamics

Simulation of **huge** mechanical systems (10⁸ atoms) over **long times**.

Photosynthetic membrane of a purple bacterium, purple membrane Images: K. Schulten, Urbana-Champain & LIA with C. Chipot (Nancy)

Sources of error:

- Modelling error,
- Time integration,
- Computation of the potential (space discretization)

4□ > 4□ > 4□ > 4□ > 4□ > 9

Example 2: Bose-Einstein condensates

Bosons gases at very low temperature develop macroscopic stable structures. Simulation of 3D **nonlinear Schrödinger equations** .

Images: W. Ketterle and D. Pritchard at MIT; X. Antoine at U. Nancy & INRIA

Sources of error:

- Time integration.
- Space discretization: 2D or 3D grids, use of CFL conditions.
- Non-linear instabilities.

Example 3: Euler equation in fluid mechanics

Describe the motion of two-dimensional fluids Von Kármán vortex streets: Real life vs. numerical simulation

Sources of error

- Time and space discretization: semi-lagrangian schemes
- Non-linear instabilities (turbulence)

Example 3: Euler equation in fluid mechanics

Simulation of the 2D Euler equation: help to find quasiperiodic solutions

N. Crouseilles & E. Faou, Quasiperiodic solution to the 2D Euler equations, 2012.

Example 4: Weak-turbulence in quantum mechanics

Schrödinger system: existence of energy cascades?

Computational issues:

- Long time simulations needed (with R. Belaouar (CMAP))
- No parallel solver for time evolution problems.

4□ > 4□ > 4 = > 4 = > = 90

A mathematical model

Toy problem in dimension d (= 1 or 10^8). $y \in \mathbb{C}^d$.

$$\dot{y} = i\omega y + y^2$$

- i reflects the mechanical structure (oscillations)
- \bullet $\omega >> 1$ high frequencies of the system
- y²: nonlinear interactions.

Linear part: $y(t) = \exp(-i\omega t)y(0)$ high oscillations

Non-linear part: $y(t) = \alpha/(t - t_*)$ blow-up

Change of variable: $z(t) = \exp(-i\omega t)y(t)$.

$$\dot{z}(t) = z(t)^2 e^{i\omega t}$$

A mathematical model

$$\dot{z}(t)=z(t)^2\mathrm{e}^{i\omega t}\Longrightarrow z(t)=z(0)+\int_0^tz(s)^2\mathrm{e}^{i\omega s}\mathrm{d}s.$$

Integration by part:

$$\begin{split} \int_0^t z(s)^2 e^{i\omega s} \mathrm{d}s &= \frac{1}{i\omega} \int_0^t z(s)^2 \Big(\frac{\mathrm{d}}{\mathrm{d}s} e^{i\omega s} \Big) \mathrm{d}s \\ &= -\frac{1}{i\omega} \int_0^t e^{i\omega s} \Big(\frac{\mathrm{d}}{\mathrm{d}s} z(s)^2 \Big) \mathrm{d}s + \frac{1}{i\omega} \Big[z(s)^2 e^{i\omega s} \Big]_0^t \\ &= \mathcal{O}(\frac{1}{\omega}) << 1 \end{split}$$

High oscillations stabilize the system.

$$y(t) \simeq \exp(-i\omega t)y(t) + \mathcal{O}(\frac{1}{\omega})$$

A fundamental phenomenon in nonlinear waves evolutions.

↓□▶ ↓□▶ ↓ □▶ ↓ □▶ ↓ □ ♥ ♀ ♥ ○

Numerical resonances

$$\dot{z}(t) = z(t)^2 e^{i\omega t}$$

Numerical integration: h small, $z(nh) \simeq z_n$ given by

$$\frac{z_{n+1}-z_n}{h}=z_n^2e^{i\omega hn}$$

Numerical resonances: $e^{i\omega h} \simeq 1$. Averaging fails.

- Problem very generic. Arises in all applications.
- Numerical scheme: an important tool to discover and analyze nonlinear physical and mathematical phenomena
- It is fundamental to extensively study the mathematical properties of numerical algorithms for themselves.

Numerical resonances

$$\dot{z}(t) = z(t)^2 e^{i\omega t}$$

Numerical integration: h small, $z(nh) \simeq z_n$ given by

$$\frac{z_{n+1}-z_n}{h}=z_n^2e^{i\omega hn}$$

Numerical resonances: $e^{i\omega h} \simeq 1$. Averaging fails.

- Problem very generic. Arises in all applications.
- Numerical scheme: an important tool to discover and analyze nonlinear physical and mathematical phenomena
- It is fundamental to extensively study the mathematical properties of numerical algorithms for themselves.

Let's imagine the future... of mathematics in a digital world

4D > 4P > 4E > 4E > E 990