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Example 1: Molecular dynamics

Simulation of huge mechanical systems (108 atoms) over long times.

Photosynthetic membrane of a purple bacterium, purple membrane
Images: K. Schulten, Urbana-Champain & LIA with C. Chipot (Nancy)

Sources of error:
@ Modelling error,
@ Time integration,

e Computation of the potential (space discretization)
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Example 2: Bose-Einstein condensates

Bosons gases at very low temperature develop macroscopic stable
structures. Simulation of 3D nonlinear Schrédinger equations .

Images: W. Ketterle and D. Pritchard at MIT; X. Antoine at U. Nancy & INRIA

Sources of error:
o Time integration.
@ Space discretization: 2D or 3D grids, use of CFL conditions.
@ Non-linear instabilities.
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Example 3: Euler equation in fluid mechanics

Describe the motion of two-dimensional fluids

Von Kdarman vortex streets: Real life vs. numerical simulation

Sources of error:

@ Time and space discretization: semi-lagrangian schemes

@ Non-linear instabilities (turbulence)
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Example 3: Euler equation in fluid mechanics

Simulation of the 2D Euler equation: help to find quasiperiodic solutions
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N. Crouseilles & E. Faou, Quasiperiodic solution to the 2D Euler equations, 2012.
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Example 4: Weak-turbulence in quantum mechanics

Schrodinger system: existence of energy cascades?

Computational issues:
@ Long time simulations needed (with R. Belaouar (CMAP))

@ No parallel solver for time evolution problems.
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A mathematical model
Toy problem in dimension d (=1 or 108). y € CY.

y = iwy +y?

o | reflects the mechanical structure (oscillations)
@ w >> 1 high frequencies of the system

@ y2: nonlinear interactions.

Linear part: y(t) = exp(—iwt)y(0) high oscillations
Non-linear part: y(t) = «/(t — t.) blow-up
Change of variable: z(t) = exp(—iwt)y(t).

2(t) = z(t)%e™
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A mathematical model

2(t) = z(t)?e™t = z(t) = z(0) —i—/ z(s)2e“sds.
0

Integration by part:
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= O(Z) <<1

High oscillations stabilize the system.
. 1
y(t) = exp(—iwt)y(t) + O(2)
A fundamental phenomenon in nonlinear waves evolutions.
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Numerical resonances

2(t) = z(t)%e™t
Numerical integration: h small, z(nh) ~ z, given by

Zn+1 — Zn

h

_ _2 _iwhn
=zle

Numerical resonances: e/“" ~ 1. Averaging fails.

@ Problem very generic. Arises in all applications.

@ Numerical scheme: an important tool to discover and analyze
nonlinear physical and mathematical phenomena

o It is fundamental to extensively study the mathematical properties of
numerical algorithms for themselves.
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Let’s imagine the future... of mathematics in a digital world
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